Influence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel

Authors

  • Hajizadeh, M.
  • Saeid, T.
Abstract:

Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of 100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amount of LAGBs were developed in the TMAZ of welded sample with 800 rpm due to the higher amount of strain and heat generated. High fraction of high angle grain boundaries were formed in the stir zone (SZ) of the welded samples through the occurrence of continuous dynamic recrystallization (CDRX). A very fine microstructure developed in the sampled welded with lower rotational speed. Analysis of texture using {111} Pole figures showed the formation of shear texture components in the SZ of both welded samples. The intensity of the obtained texture for the sample welded with 800 rpm was greater. The formation of shear texture components in the SZ of both samples implied the occurrence of CDRX mechanism

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

full text

Microstructural evolution of 304 austenitic stainless steel in friction stir welding process

Friction stir welding (FSW) was conducted on AISI 304 austenitic stainless steel plate with 2 mm thickness. The FSW was performed at a welding and rotational speeds of 50 mm/min and 400 rpm, respectively. Microstructure observations by the optical microscopy showed that a severe grain refinement occurred in the stir zone (SZ). Electron backscattered diffraction analysis (EBSD) results indicated...

full text

The Effect of Friction Stir Processing Speed Ratio on the Microstructure and Mechanical Properties of A 430 Ferritic Stainless Steel

This study is an attempt to investigate the effect of welding rotational and traverse speed on mechanical and microstructural properties of A 430 stainless steel in order to give an effective processing window to achieve an appropriate microstructure and so mechanical properties. There are a wide range industrial uses for ferritic stainless steel. There from they have some problems like grain c...

full text

Evaluation of microstructure and mechanical properties of friction stir welded copper / 316L stainless steel dissimilar metals

In the present research, friction stir welding (FSW) process was used for butt joining of pure copper plate to 316L stainless steel plate. Mechanical properties and microstructural characteristics of the joint were evaluated by microhardness and tensile tests as well as optical and scanning electron microscope (SEM). It was found that microstructure of the weld nugget (WN) has fine grains where...

full text

Effect of Tool Rotational Speed on the Tensile and Microstructural Properties of Friction Stir Welded Different Grades of Stainless Steel Joints

Friction stir welding is a relatively new solid state joining process, which is suitable for welding similar and dissimilar materials.  The present research work concentrates on the effect of tool rotational speed on the tensile, microstructural properties and microhardness of the friction stir welded joints of different grades of austenitic stainless steel sheets. Four different tool rotationa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  1- 8

publication date 2020-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023